Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots

نویسندگان

  • Christopher Gutiérrez
  • Lola Brown
  • Cheol-Joo Kim
  • Jiwoong Park
  • Abhay N. Pasupathy
چکیده

Relativistic fermions that are incident on a high potential barrier can pass through unimpeded, a striking phenomenon termed the ‘Klein paradox’ in quantum electrodynamics. Electrostatic potential barriers in graphene provide a solid-state analogue to realize this phenomenon. Here, we use scanning tunnelling microscopy to directly probe the transmission of electrons through sharp circular potential wells in graphene created by substrate engineering. We find that electrons in this geometry display quasi-bound states where the electron is trapped for a finite time before escaping via Klein tunnelling. We show that the continuum Dirac equation can be successfully used to model the energies and wavefunctions of these quasi-bound states down to atomic dimensions. We demonstrate that by tuning the geometry of the barrier it is possible to trap particular energies and angular momentum states with increased e ciency, showing that atomic-scale electrostatic potentials can be used to engineer quantum transport through graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Information: Klein tunneling and electron trapping in nanometre-scale graphene quantum dots

1. Spiral pattern Cu(111) reconstruction 2. STM bias-dependent height of graphene quantum dots 3. Determination of Dirac point from dI/dV and field emission resonance spectroscopies 4. Massless Dirac fermion incident on a circular step 5. Massless spinless boson incident on a circular step 6. Assignment of angular momentum modes to experimental data 7. Sublattice symmetry and asymmetry 8. Linea...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

Tunable quantum dots in monolayer graphene

We examine a graphene quantum dot formed by combining an electric and a uniform magnetic field. The electric field creates a smooth quantum well potential while the magnetic field induces an exponential tail to the dot states. The states peak in the well and the electrostatic barrier region as a result of the Klein tunneling effect. Coupling between dot states which peak in different regions ca...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016